Analisis Kegagalan dan Nilai Efisiensi Shell and Tube Heat Exchanger PT. Pertamina Hulu Rokan Indonesia

Authors

  • Hani Khairunnisa Program Studi Manufaktur, Jurusan Teknik Mesin, Politeknik Negeri Jakarta
  • Safaa Najah Saud Al-Humairi Faculty of Information Science and Engineering, Management & Science University 40100 Shah Alam, Selangor, Malaysia

Keywords:

shell and tube heat exchanger, efisiensi, ketebalan tabung, HTRI, steam, fluida produksi, design of experiment (DOE)

Abstract

Penukar panas shell and tube adalah alat untuk menggunakan perpindahan di tengah suhu fluida dua atau lebih. Penukar panas shell dan tube PT. Pertamina Hulu Rokan yang digunakan untuk mengolah minyak masih memiliki nilai efisiensi yang rendah sehingga mempengaruhi jumlah produksi minyak di Indonesia. Dalam pengerjaan tugas akhir ini, diulas analisis modifikasi tabung berdiameter 19,05 mm sesuai dengan ketebalan 2,108 mm menjadi 1,651 mm sesuai dengan agregat Design of Experiment (DOE) untuk 54 percobaan untuk mendapatkan hasil eksperimen nilai suhu, tekanan, dan aliran massa pada fluida steam dan production fluid API 19.5 yang menghasilkan efisiensi tertinggi dan overdesign rendah pada alat ini. Metode ini dilakukan dengan Langkah awal pemahaman studi literatur lalu mengumpulkan data dari PT. Pertamina Hulu Rokan Indonesia kemudian dihitung datanya secara manual menggunakan standar TEMA 9th dan Metode Kern. Kemudian masukan parameter pada HTRI sebanyak 54 kali percobaan dan menjalankan HTRI. Lalu menganalisis perhitungan dengan Perhitungan HTRI untuk validasi, Jika perhitungannya benar buat 3D Modeling dengan solidworks dan didapatkan hasil analisa. Kemudian, perangkat lunak Solidworks digunakan untuk membuat pemodelan 3D dan memvalidasi HTRI. Dari pengadaan yang diperoleh, terjadi peningkatan persentase efisiensi dari nilai 95,33% pada ketebalan 2,108 mm menjadi 97,27% pada ketebalan 1,651 mm.

References

Najicha, F. U. (2021). Oil and Natural Gas Management Policy in Realizing Equal Energy in Indonesia. Journal of Human Rights, Culture and Legal System, 1(2).

Hasanudin, H., Nurwulandari, A., Adnyana, I. M., & Loviana, N. (2020). The effect of ownership and financial performance on firm value of oil and gas mining companies in Indonesia. International Journal of Energy Economics and Policy, 10(5), 103.

Daryanto, W. M., & Nurfadilah, D. (2018). Financial performance analysis before and after the decline in oil production: Case study in Indonesian oil and gas industry. International Journal of Engineering & Technology, 7(3.21), 10-15.

Krisna, K., & Sukarno, S. (2021). Performance of Pertamina-Indonesia among Oil and Gas Companies in the Fortune Global 500 of Southeast Asia.

Barros, J. J. C., Coira, M. L., de la Cruz López, M. P., & del Caño Gochi, A. (2018). Sustainability optimisation of shell and tube heat exchanger, using a new integrated methodology. Journal of Cleaner Production, 200, 552-567.

Saffarian, M. R., Fazelpour, F., & Sham, M. (2019). Numerical study of shell and tube heat exchanger with different cross-section tubes and combined tubes. International Journal of Energy and Environmental Engineering, 10(1), 33-46.

Pasha, M., Zaini, D., & Shariff, A. M. (2017). Inherently safer design for heat exchanger network. Journal of Loss Prevention in the Process Industries, 48, 55-70.

Daniali, O. A., Toghraie, D., & Eftekhari, S. A. (2020). Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO. Physica A: Statistical Mechanics and its Applications, 540, 123010.

Hoseinzadeh, S., & Heyns, P. S. (2020). Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Engineering Failure Analysis, 113, 104548.

Bichkar, P., Dandgaval, O., Dalvi, P., Godase, R., & Dey, T. (2018). Study of shell and tube heat exchanger with the effect of types of baffles. Procedia Manufacturing, 20, 195-200.

Farrahi, G. H., Chamani, M., Kiyoumarsioskouei, A., & Mahmoudi, A. H. (2019). The effect of plugging of tubes on failure of shell and tube heat exchanger. Engineering Failure Analysis, 104, 545-559.

Farrahi, G. H., Minaii, K., Chamani, M., & Mahmoudi, A. H. (2019). Effect of Residual Stress on Failure of Tube-to-tubesheet Weld in Heat Exchangers. International Journal of Engineering, 32(1), 112-120.

Jamil, M. A., Goraya, T. S., Shahzad, M. W., & Zubair, S. M. (2020). Exergoeconomic optimization of a shell-and-tube heat exchanger. Energy Conversion and Management, 226, 113462.

Arani, A. A. A., & Uosofvand, H. (2020). Improving shell and tube heat exchanger thermohydraulic performance using combined baffle. International Journal of Numerical Methods for Heat & Fluid Flow.

Handibag, R., Potdar, U., & Jadhav, A. Thermal Design of Tube and Shell Heat Exchanger and Verification by HTRI Software.

Okesola, O. J., Adebiyi, A. A., Owoade, A. A., Adeaga, O., Adeyemi, O., & Odun-Ayo, I. (2020, July). Software Requirement in Iterative SDLC Model. In Computer Science On-line Conference (pp. 26-34). Springer, Cham.

Imamovic, M., Hadžikadunić, F., Talić-Čikmiš, A., & Bošnjak, A. (2019, October). Examples of kinematic analysis of complex mechanism using modern software applications. In IOP Conference Series: Materials Science and Engineering (Vol. 659, No. 1, p. 012019). IOP Publishing.

Kothandaraman, C. P. (2006). Fundamentals of Heat and Mass Transfer (3rd ed., Vol. 729). New Age International.

Downloads

Published

2023-04-01

How to Cite

Khairunnisa, H., & Al-Humairi, S. N. S. (2023). Analisis Kegagalan dan Nilai Efisiensi Shell and Tube Heat Exchanger PT. Pertamina Hulu Rokan Indonesia. Prosiding Seminar Nasional Teknik Mesin, 12(2), 1372–1381. Retrieved from https://prosiding.pnj.ac.id/sntm/article/view/460